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Abstract

This paper presents COSMOS, a method for modeling
and synthesis of complex communicating systems.
COSMOS starts from a system-level specification
based on an extended finite state machine model
allowing for the specification of complex protocols.
System-level synthesis is composed of three tasks:
partitioning systems into inter-dependent sub-systems,
inter-sub-system communication synthesis and
architecture generation. The output is a flexible
architecture model which includes both hardware and
software components. The overall method will he
illustrated through an example.
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1. Introduction

The complexity of today's designs and in particular
heterogeneous systems implies the need for global
system approaches that handle both complex behavior
and high-level communication. In this paper we are
interested in the design of systems composed of a set of
parallel processors communicating through well defined
protocols. A processor may be a processor running
software or an ASIC. The implementation of such a
system may be one chip, a board, or a distributed multi-
computer system.

1.1. Motivations

The fields of design, specification and synthesis of
mixed hardware/software systems are emerging and
becoming more and more popular (1, 2, 3, 4].

The main problem in current hardware/software design
approaches is the integration of both resulting hardware
designs and software designs. The use of a fixed
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hardware/software communication model restricts the
applicability of the approach. The non availability of
high-level communication models leads to start the
design process with a too detailed description. The key
issue that have to be solved is to find a way for
abstracting complex communication protocols during
the design process. We need to allow handle a
communication model at different levels of abstraction
in order to delay as much as possible the selection of
the communication protocol that will be used. Of
course the ultimate goal is to allow the re-use of
existing communication models in order to allow
hardware/software synthesis and mapping on existing
architecture platforms.

The objective of this work is, the definition of a design
methodology and tools aimed at the design and
synthesis of high-level communication in the case of
mixed complex hardware/software systems.

1.2. Related research

Several projects currently in progress (SpecSyn at
Irvine [8], CODES at Siemens [10], SDW at Italtel [9],
Thomas approach at CMU [12], Gupta and De Micheli
approach at Stanford [2], Ptolemy at Berkeley {3, 4]) are
trying to integrate both the hardware and the software in
the same design process. These approaches differ by (1)
the input specification (CDFG model or
communicating processes), (2) the synthesis method
(automatic, interactive, or manual), and (3) the target
architecture considered (monoprocessor, multi-
processor).

An input description may be given in a hardware
description language (VHDL [11], HardwareC [2]) or a
system-level description language (SDL [10], CSP
[12], Statemate [10], SpecChart [8]). In the first case, a
CDFG intermediate format is generally used by the
subsequent synthesis tools. In the second case a system
level intermediate format is needed. The application



domain considered by each approach is tightly dependent
on the description power of the input specification
language taken.

It also appears that the synthesis process may be
decomposed into two tasks: (1) the partitioning and (2)
the communication (or interface) synthesis. The
partitioning of a system's specification generates a set
of partitions (hardware modules, communication
blocks, software modules) which will be mapped on a
target architecture. Most of the existing systems that
starts from a CDFG, make use of an automatic
partitioning. However, due to increased complexity,
most systems based on a model of communicating
processes make use of either interactive or manual
partitioning.

The communication synthesis allows to synthesize
interfaces between sub-systems, for example, the
definition of the communication protocol or the /O
interface between components. Recent codesign
approaches are based on one of three communication
models: (1) fixed communication scheme [10] (e.g.
point to point), (2) communication with a shared
memory model [12], or (3) communication with a
protocol [2, 4] (nore or less complex).

The target architecture used to implement a design can
be classified in one of the following cases: (1) Multi-
chip architecture [8], (2) Architecture based on one
processor and hardware components (ASICs, FPGAs)
[2, 10, 12], and (3) Distributed and flexible architecture
[3, 4]). For example, in this latter case, several
configurations of processors may be used
(monoprocessor, multiprocessor using a shared
memory, message passing based architecture, etc.).

The main contribution of this work is the use of a
system design model allowing for the re-use of existing
communication models. This is obtained thanks to a
clean separation between communication and
computation during all the synthesis steps. Existing
communication models may be abstracted as abstract
channel units and used at different levels of abstraction,

The next section describes the hardware/software design
models used in COSMOS both at the system-level and
the architectural level. Section 3 gives an outline of the
COSMOS synthesis environment. In section 4, an
application example treated by system-level synthesis
tools is presented.

2. Design models for codesign

COSMOS starts the design process with a system-level
specification that may be given in an existing language
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such as SDL, StateCharts, ESTELLE or LOTOS. Qur
philosophy is to allow the designer to use one or more
of these languages and to translate these descriptions
into a common intermediate torm, called SOLAR [5],
capable of modeling the main concepts handled by
system-level specification languages (concurrency,
high-level communication, synchronization and
exceptions). This intermediate form then acts as an
input 1o the system-level synthesis tools. The main
steps needed in order to transform a system-level
specification into a mixed hardware/software one are
system partitioning, communication synthesis and
architecture generation. The output of architecture
generation is an heterogeneous architecture represented
by VHDL for the hardware elements and by C for the
software. This description is finally mapped on a
multiprocessor architecture. This mapping may be
achieved using standard code generators to transform C
into assembler code for software parts and synthesis
tools in order to translate the VHDL into ASICs.

This section details the design models used by
COSMOS. The intermediate form SOLAR will be
introduced first, then the target architecture will be
expliined.

2.1. SOLAR: System-Level modeling for
synthesis

SOLAR is a design representation for system-level
concepts. SOLAR allows several levels of description,
starting from the level of communicating systems
which contains a hierarchical structure of processes
communicating via channels right down to the register
transfer level and basic FSM descriptions. In addition,
the comunuuication schemes can be described separately
from the rest of the system. SOLAR's basic model is
an extended FSM that allows the representation of
hierarchy and parallelism. Such a model is shown in
figure 1.

. - -

- * I * 3 .‘
(( sT1 ) (512 ))(( s13 )X ST4D
- L

Figure 1: SOLAR: Basic Model.
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In SOLAR, a system is structured in terms of
communicating DesignUnits (DUs). A DesignUnit can
cither contain a set of other DesignUnits and
communication operators known as ChannelUnits



(CUs), or a set of transition tables modeled by the
StateTable (ST) operator. This operator is used to
model process-level hierarchy. StateTables can be
executed in parallel (as indicated by the dashed line
between ST1 and ST2 in figure 1) or serially. They can
contain other StateTables, simple leaf states, state
transitions and exceptions.

Communication between sub-systems (or DesignUnits)
is performed using SOLAR's ChannelUnit. It is
possible to model most system-level communication
properties such as message passing, shared resources
and other more complex protocols. The ChannelUnit
combines the principles of monitors and message
passing. The model is known as the Remote Procedure
Call or RPC. The RPC model is a mechanism that
allows processes to communicate across message-
carrying networks. The networking services are
transparent to the user and communication is invoked
using the semantics of a standard procedure call.

Figure 2 shows the basic configuration of the
ChannelUnit. Not only does this model enable the user
to describe a wide range of communication schemes, it
also separates the communication from the rest of the
design, thereby allowing the re-use of existing
communication schemes.

The ChannelUnit allows communication between any
number of DesignUnits (a DesignUnit may be viewed
as a system-level process). Access to the ChannelUnit
is controlled by a fixed set of procedures known as
methods (or services). These methods correspond to the
visible part of the channel. In order to communicate, a
DesignUnit needs to access at least one method. It
achieves this through the use of a special procedure call
statement known as a CUCall. In other words, the
channel acts as a co-processor for the processes using it.
The rest of the ChannelUnit is completely transparent
to the user and consists of a set of ports linking the
methods' parameters to the channel's controller. The
controller guards the current state of the channel as well
as conflict-resolution functions. The methods interact
with the controller which in turn modifies the channel's
global state and synchronizes the channel.

During the synthesis process, COSMOS uses an
external library of CUs. A CU corresponds to either a
standard protocol or a customized protocol described by
the user. During partitioning and communication
synthesis an abstract model of the channel is used. At
the architecture generation step, an implementation of
the channel is needed. This implementation may be the
result of an early synthesis step using COSMOS or
another design method. It may also correspond to an
existing architecture.
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Figure 2: SOLAR's communication model: the
ChannelUnit.

2.2. Hardware/Software architectural model

In this approach, a predefined implementation
architecture is considered. This architecture serves as a
platform onto which a mixed hardware/software system
is mapped. The underlying architectural model is
general enough to represent a large class of existing
hardware/software platforms. As described in figure 3,
the architecture is composed of three kinds of
components: (1) Software components, (2) Hardware
components, and (3) Communication components.
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Figure 3: Flexible Architecture Platform.

Communication modules come from a channel unit
library, they correspond to existing communication
models that may be as simple as a handshake or as
complex as a layered network. For example, a
communication controller may correspond to an
existing interface circuit, an ASIC or some micro-code
execuling on a dedicated microprocessor. The
communication scheme may be one of the three
different types: HWeHW, SWeoSW, or HW<SW.

The proposed model allows different implementations
of mixed hardware/software systems. A typical
architecture will be composed of hardware modules,
software modules, and communication modules linked
with buses. Figure 4 shows an example of an
architecture supported by COSMOS.
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Figure 4: Example of an Architecture Supported by
COSMOS.

3. COSMOS: A System-level synthesis
framework

This section concentrates on the design tlow within the
COSMOS environment. Currently, COSMOS starts
from the system-level specification language SDL, and
produces a heterogeneous architecture including
hardware descriptions in VHDL and software
descriptions in C. As shown in Figure 5, the
COSMOS environment addresses four issues: system-
level specification, system-level partitioning,
communication synthesis (including channel binding
and channel mapping), and architecture generation
(including virtual prototyping and architecture
mapping). In this chart, the boxes are to be interpreted
as activities, whereas the small circles correspond to
intermediate models and libraries. These are expanded
and represented as system level graphs. These models
and libraries are explained in the rest of this section.

In the present version of COSMOS, the design tlow
starts from an SDL description. However, all the
subsequent synthesis steps make use of SOLAR. The
translation of SDL communication concepts leads to a
reorganization of the description. The SDL to SOLAR
translation is performed automatically.

Starting from a SOLAR representation, a system is
partitioned by a system-level partitioning tool box
called PARTIF [6].

PARTIF starts with a set of communicating processes
organized in a hierarchical manner and described in
SOLAR. Each process represents an extended FSM.
Another input to PARTIF is a library of SOLAR
communication models.
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The result of system-level partitioning is a set of
communicating and heterogeneous processes organized
in a graph where the nodes may be either design units
or channel units and the edges of the graph may be
signals or channel accesses.

In the present version of COSMOS, the partitioning is
performed interactively. PARTIF provides five system-
level transformation primitives. The two first
primitives MOVE and MERGE allow the reordering of
processes hierarchy and merging processes together to
form a single process. The two second primitives are
SPLIT and CUT. These allow splitting up one design
unit to form inter-dependent design units for
distribution purposes. The fifth primitive (called
CLUSTER) allows to cluster several processes in one
design unit. The sequencing of these primitives is
decided by the user.

The partitioning step also determines which technology
will be used for the implementation of each design unit.
For example, a design unit may be implemented in pure
hardware, in software running on an operating system
or in micro-code adapted for a standard microprocessor.
The choice is based on criteria such as execution time,
rate of use, reprogrammability, re-use of existing
components and technology limitations. This choice is
performed manually.

The objective of communication synthesis [7] is to
transform a system containing a set of processes
communicating via high-level primitives through
channels into a set of interconnected processes
communicating via signals and having the control of
this communication distributed among the processes.
Communication synthesis starts with two inputs: A
heterogeneous system graph and a library of SOLAR
communication models. As stated above, this activity
may be decomposed into two tasks: channel binding and
channel mapping [7].

The channel binding algorithm is assumed to choose
the appropriate set of channel units from the library of
communication models to carry out the desired
communication. This is similar to the
binding/allocation of functional units in classic high-
level synthesis tools. The communication between the
sub-systems may be executed by one of the schemes
(synchronous, asynchronous, serial, parallel, etc....)
described in the library. The choice of a given channel
unit will not only depend on the communication to be
executed but also on the performances required and the
implementation technology of the communicating
design units. In the present version of COSMOS, this
task is done manually.
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Figure 5: System-Level Synthesis: Design Flow.

The channel mapping task replaces all channel units by
distributing all of the information contained therein
among the design units and specific communication
controllers. These controllers are selected from a library
of channel implementations. A channel may be a
software component described in C code or a hardware
component described in VHDL. All processes that
execute a channel unit call to a particular method, will
have this call replaced by a call to a local procedure
implementing that method. The variables and signals
used by the methods become ports in the modified
design unit. In other words, the channel accesses are
expanded into bundles of signals (ports) according to the
methods used by the design units. The implementation
of this local procedure call will depend on the
implementation of the corresponding design unit. If the
design unit is entirely software executing on a given
operating system, method calls are expanded into
system calls, making use of existing communication
mechanisms within the system. If the design unit is to
be executed on a standard micro-processor, the method
becomes an access to a bus routine written in
assembler. These two options are more software-
oriented and require the user to partition his system into
software and hardware elements before executing the
communication synthesis. The design unit can also be
executed as embedded software on a hardware datapath
controlled by a micro-coded controller. In this case, the
method call will become a call to a standard micro-code

21

routine. Finally, the design unit may be implemented
entirely in hardware.

The architecture generation step starts with a set of
interconnected hardware/software sub-systems (output of
communication synthesis). As indicated above, this
activity is decomposed into two tasks: virtual
prototyping and architecture mapping.

During the first task, a translation of SOLAR into
executable code (VHDL and/or C) is performed. Each
sub-system is translated independently. The output of
virtual prototyping is a heterogeneous architecture
represented by VHDL for the hardware elements and C
for the software elements (see figure 5).

During the architecture mapping task, this mixed
description is mapped on a flexible architecture
including hardware sub-systems, software sub-systems,
and communication sub-systems. This may be achieved
using standard code generators to transform C into
assembler code for software parts and synthesis tools in
order to translate the VHDL into ASICs. Channel units
correspond to library components. The separation
between communication and computation (hardware and
software) allows the re-use of existing communication
models. In fact a channel may be the result of an early
synthesis step using COSMOS or another design
method. It may also correspond to an existing
architecture (see section 4),



4. An Example

To illustrate the hardware/software codesign approach,
an example of a Real-Time Acquisition and Storage
system (RTAS) will be presented (see tigure 6). In this
example, the RTAS system performs the following
tasks:

» Receipt of an analog signal from 8-bit multiplexed
wires,

» Conversion of each analog signal into a digital signal,
« Storage of the result into disk.

The RTAS system is mainly used for the acquisition of
biological signals. The signals frequency may reach 4
Khz. In order to satisfy Shannon theorem, a minimal
sampling frequency must be 64 Khz. Consequently, the
time separating two samples should not exceed 12.5
ms.

Thus, the time of reading, converting and storing
signals has to be less than 12,5 ms (this time
corresponds to the selection of the sampling frequency).

As shown in figure 6, the RTAS system is composed
of two sub-systems communicating via a
communication channel. The first is the Acquisition
sub-system which receives analog signals, selects and
converts the appropriate signal and sends it over the
communication channel. The second is the Storage sub-
system which receives and stores the information.
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sub-system

Communication
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Acquisition & Channel
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Figure 6: Real-Time Acquisition and Storage System.

4.1. System modeling

For this example we will start the design just after
process-level partitioning. We will then start with a
communicating systems graph.

The system is composed of two comimunicating sub-
systems. A brief outline of the SOLAR description of
this system is presented in figure 7(b). The first
DesignUnit, RTAS is a structural view of the system.
The two constituent DesignUnits, Acquisition and
Storage, are instantiated and a netlist of the connections
between these two DesignUnits is given. One of the
nets connecting the two DesignUnits is a ChannelUnit.
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This description is independent of the communication
protocol. At this level, the communication channel is a
ChannelUnit that allows communication between the
Acquisition sub-system and the Storage sub-system
known as Acquisition DesignUnit (ADU) and Storage
DesignlUnit (SDU) (figure 7(a)). The access to the
channel is accomplished by "methods” (services). In
order to communicate, the ADU and the SDU should
invoke the appropriate method. In this example, the
channel contains two methods accessed by the
DesignlUnits. The Send method is called by the ADU
process to send digital signals and the Receive method
is called to read the information.

5

Storage

(SOLAR RTAS-system
(DesignUnit RTAS
(Interface...)
(Contents
(Instance Acquisition...)
(Instance Storage...)
(Net (Joined...) ..)

Acquisition
O

)
(DesignUnit Acquisition
/* Receives analog signals */

S i (DesignUnit Storage
/* Stores digital signals */
CONTROLLER )
(a) (b)

Figure 7: (a) Communicating Sub-systems,
(b) Overview of SOLAR structure.

4.2, Hardware/Software partitioning

In this example, the only partitioning needed is
hardware/software partitioning. The SDU is mapped to
softtware, the ADU and the communication controller
are mapped to hardware in order to meet the real-time
constraint(12.5 ms).

Only the Acquisition DesignUnit, the Storage
DesingUnit and the communication channel will be
realized. We assume that a multiplexer, an A/D
converter and a Storage disk are chosen among already
existing devices.

4.3. Communication synthesis

The objective of communication synthesis is to
transform the RTAS system containing a
communicating ADU and SDU into interconnected
ADU and SDU communicating via a channel unit from
the library. The two steps of communication synthesis
will be detailed.



In this case we started the channel binding step with a
library including two protocnls* having the same
interface (communication primitives). The first is a
simple synchronous protocol. This protocol assumes
that only one converted signal at a time is loaded in the
system memory. In this case, only the system bus is
used for data transfer. However, transfer, control and
storage programs bring the execution time to more than
12,5 ms. Thus, this scheme does not meet real-time
requirements. The second protocol is asynchronous. The
channel is used for governing access to a dual port
RAM (two memories). The ADU and the SDU may
work asynchronously. For example, while the ADU is
writing to the first memory, the SDU may be reading
from the second memory.

An analysis indicated that only the second solution
meets real-time requirements. Then, the channel is
bound to the second CU.

During the channel mapping step, the information
contained in the ChannelUnit is completely distributed
among the communicating processes. The resulting
system is a set of interconnected processes each of
which can be synthesized independently using the
appropriate tools (see figure 8). This model is
represented as a set of interconnected SOLAR
DesignUnits. In this case we obtain a hardware module,
a software module and a communication module from
the library. One can note that this module is
implemented in hardware.

HW HW SW
£
s ¢
Acquisition; § re Controller E: Storage
D L
E
Figure 8: Communication Synthesis Output for the
RTAS.

4.4. Architecture generation

The first task was to convert the SOLAR description in
order to generate C code for the Storage module and
VHDL code for the Acquisition and controller
components. This model (also called virtual prototype)
can be validated using classic VHDL-C simulation
environments.

The final step of codesign is to produce a prototype of
the system. The prototyping method is used for accurate

* SOLAR allows many different protocols.
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performance evaluation using realistic implementation
time. Figure 9 shows a global view of the RTAS
system prototype.

In this case we used an Intel 286-based PC AT as a
development platform. The hardware is implemented on
an FPGA based extension board. The communication
module is composed of an interrupt-controller, a DMA,
and a dual port memory. The protocol is executed as
follows: Converted signals are transferred into the
source memory using the Send method. When this
memory is full, the SDU is interrupted through an
interrupt-controller to transfer acquired information into
the system memory using a DMA. The acquisition is
carried on with the second memory. A communication
controller is used to control transfer between the ADU
and the SDU and to resolve memory access conflicts.

An analysis of the prototype system indicates that this
solution correctly implements the system functionality
while meeting real-time requirements. This system has
been experimented with real-biological signals. The
result is satistactory.
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Figure 9: The RTAS system prototype.
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5. Conclusions

In this paper a full methodology for hardware/software
codesign called COSMOS has been presented.
COSMOS is based on a system level intermediate
format called SOLAR that allows system specification
at different levels. This model allows for the re-use of
existing communication models thanks to a clean
separation between communication and computation
during all the synthesis steps. Existing communication
models may be abstracted as abstract channel units and
used at different Ievels of abstraction.
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